The landscape of computational approaches for artificial photosynthesis (2024)

References

  1. Cramer, C. J. & Truhlar, D. G. Density functional theory for transition metals and transition metal chemistry. Phys. Chem. Chem. Phys. 11, 10757–10816 (2009).

    Article Google Scholar

  2. Pacchioni, G. Modeling doped and defective oxides in catalysis with density functional theory methods: room for improvements. J. Chem. Phys. 128, 182505 (2008).

    Article Google Scholar

  3. Scanlon, D. O., Morgan, B. J. & Watson, G. W. Modeling the polaronic nature of p-type defects in Cu2O: The failure of GGA and GGA+U. J. Chem. Phys. 131, 124703 (2009).

    Article Google Scholar

  4. Casida, M. E. & Huix-Rotllant, M. in Density-Functional Methods for Excited States (eds Ferré, N. et al.) 1–60 (Springer, 2016).

  5. Young, K. J. et al. Light-driven water oxidation for solar fuels. Coord. Chem. Rev. 256, 2503–2520 (2012).

    Article Google Scholar

  6. Negre, C. F. A. et al. Efficiency of interfacial electron transfer from Zn-porphyrin dyes into TiO2 correlated to the linker single molecule conductance. J. Phys. Chem. C 117, 24462–24470 (2013).

    Article Google Scholar

  7. Sivula, K. & van de Krol, R. Semiconducting materials for photoelectrochemical energy conversion. Nat. Rev. Mater. 1, 15010 (2016).

    Article Google Scholar

  8. Rego, L. G. C. & Batista, V. S. Quantum dynamics simulations of interfacial electron transfer in sensitized TiO2 semiconductors. J. Am. Chem. Soc. 125, 7989–7997 (2003).

    Article Google Scholar

  9. Yang, K. R. et al. Solution structures of highly active molecular Ir water-oxidation catalysts from density functional theory combined with high-energy X-ray scattering and EXAFS spectroscopy. J. Am. Chem. Soc. 138, 5511–5514 (2016).

    Article Google Scholar

  10. Doan, H. A. et al. Quantum chemistry-informed active learning to accelerate the design and discovery of sustainable energy storage materials. Chem. Mater. 32, 6338–6346 (2020).

    Article Google Scholar

  11. Yao, Z. et al. Machine learning for a sustainable energy future. Nat. Rev. Mater. 8, 202–215 (2022).

  12. Liu, J., Wan, L., Li, Z. & Yang, J. Simulating periodic systems on a quantum computer using molecular orbitals. J. Chem. Theory Comput. 16, 6904–6914 (2020).

    Article Google Scholar

  13. Mizuta, K. et al. Deep variational quantum eigensolver for excited states and its application to quantum chemistry calculation of periodic materials. Phys. Rev. Res. 3, 043121 (2021).

    Article Google Scholar

  14. Cao, Y. et al. Quantum chemistry in the age of quantum computing. Chem. Rev. 119, 10856–10915 (2019).

    Article Google Scholar

  15. López, I. et al. A self‐improved water‐oxidation catalyst: is one site really enough? Angew. Chem. Int. Ed. 53, 205–209 (2014).

    Article Google Scholar

  16. Heyd, J., Peralta, J. E., Scuseria, G. E. & Martin, R. L. Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. J. Chem. Phys. 123, 174101 (2005).

    Article Google Scholar

  17. Wang, L., Long, R. & Prezhdo, O. V. Time-domain ab initio modeling of photoinduced dynamics at nanoscale interfaces. Annu. Rev. Phys. Chem. 66, 549–579 (2015).

    Article Google Scholar

  18. González, L. & Lindh, R. Quantum Chemistry and Dynamics of Excited States: Methods and Applications (John Wiley and Sons, 2020).

  19. Man, I. C. et al. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3, 1159–1165 (2011).

    Article Google Scholar

  20. Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017).

    Article Google Scholar

  21. Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972).

    Article Google Scholar

  22. Stowasser, R. & Hoffmann, R. What do the Kohn−Sham orbitals and eigenvalues mean? J. Am. Chem. Soc. 121, 3414–3420 (1999).

    Article Google Scholar

  23. Cohen, A. J., Mori-Sánchez, P. & Yang, W. Insights into current limitations of density functional theory. Science 321, 792–794 (2008).

    Article Google Scholar

  24. Anisimov, V. I., Zaanen, J. & Andersen, O. K. Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 44, 943–954 (1991).

    Article Google Scholar

  25. Liechtenstein, A. I., Anisimov, V. I. & Zaanen, J. Density-functional theory and strong interactions: orbital ordering in Mott-Hubbard insulators. Phys. Rev. B 52, R5467–R5470 (1995).

    Article Google Scholar

  26. Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998).

    Article Google Scholar

  27. Liao, P. & Carter, E. A. New concepts and modeling strategies to design and evaluate photo-electro-catalysts based on transition metal oxides. Chem. Soc. Rev. 42, 2401–2422 (2013).

    Article Google Scholar

  28. Meng, X. Y. et al. Enhanced photoelectrochemical activity for Cu and Ti doped hematite: the first principles calculations. Appl. Phys. Lett. 98, 112104 (2011).

    Article Google Scholar

  29. Becke, A. D. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    Article Google Scholar

  30. Hedin, L. New method for calculating the one-particle Green’s function with application to the electron-gas problem. Phys. Rev. 139, A796–A823 (1965).

    Article Google Scholar

  31. Kulik, H. et al. Roadmap on machine learning in electronic structure. Electron. Struct. 4, 023004 (2022).

  32. Runge, E. & Gross, E. K. U. Density-functional theory for time-dependent systems. Phys. Rev. Lett. 52, 997–1000 (1984).

    Article Google Scholar

  33. Carter-Fenk, K., Cunha, L. A., Arias-Martinez, J. E. & Head-Gordon, M. Electron-affinity time-dependent density functional theory: formalism and applications to core-excited states. J. Phys. Chem. Lett. 13, 9664–9672 (2022).

  34. Hait, D. & Head-Gordon, M. Orbital optimized density functional theory for electronic excited states. J. Phys. Chem. Lett. 12, 4517–4529 (2021).

    Article Google Scholar

  35. Kümmel, S. Charge-transfer excitations: a challenge for time-dependent density functional theory that has been met. Adv. Energy Mater. 7, 1700440 (2017).

    Article Google Scholar

  36. Salpeter, E. E. & Bethe, H. A. A relativistic equation for bound-state problems. Phys. Rev. 84, 1232–1242 (1951).

    Article MathSciNet MATH Google Scholar

  37. Joung, J. F. et al. Deep learning optical spectroscopy based on experimental database: potential applications to molecular design. JACS Au 1, 427–438 (2021).

    Article Google Scholar

  38. Abuabara, S. G., Rego, L. G. C. & Batista, V. S. Influence of thermal fluctuations on interfacial electron transfer in functionalized TiO2 semiconductors. J. Am. Chem. Soc. 127, 18234–18242 (2005).

    Article Google Scholar

  39. Li, C. et al. Facet-dependent photoelectrochemical performance of TiO2 nanostructures: an experimental and computational study. J. Am. Chem. Soc. 137, 1520–1529 (2015).

    Article Google Scholar

  40. Menzel, J. P. et al. Photoinduced electron injection in a fully solvated dye-sensitized photoanode: a dynamical semiempirical study. J. Phys. Chem. C 124, 27965–27976 (2020).

    Article Google Scholar

  41. Jiang, J. et al. Molecular design of light-harvesting photosensitizers: effect of varied linker conjugation on interfacial electron transfer. Phys. Chem. Chem. Phys. 18, 18678–18682 (2016).

    Article Google Scholar

  42. Liu, C. & Jakubikova, E. Two-step model for ultrafast interfacial electron transfer: limitations of Fermi’s golden rule revealed by quantum dynamics simulations. Chem. Sci. 8, 5979–5991 (2017).

    Article Google Scholar

  43. Oliboni, R. S. et al. Vibronic effects in the ultrafast interfacial electron transfer of perylene-sensitized TiO2 surfaces. J. Phys. Chem. C 123, 12599–12607 (2019).

    Article Google Scholar

  44. Komsa, H.-P., Broqvist, P. & Pasquarello, A. Alignment of defect levels and band edges through hybrid functionals: effect of screening in the exchange term. Phys. Rev. B 81, 205118 (2010).

    Article Google Scholar

  45. Toroker, M. C. et al. First principles scheme to evaluate band edge positions in potential transition metal oxide photocatalysts and photoelectrodes. Phys. Chem. Chem. Phys. 13, 16644–16654 (2011).

    Article Google Scholar

  46. Snyder, J. C., Rupp, M., Hansen, K., Müller, K.-R. & Burke, K. Finding density functionals with machine learning. Phys. Rev. Lett. 108, 253002 (2012).

    Article Google Scholar

  47. Letchworth-Weaver, K. & Arias, T. A. Joint density functional theory of the electrode-electrolyte interface: application to fixed electrode potentials, interfacial capacitances, and potentials of zero charge. Phys. Rev. B 86, 075140 (2012).

    Article Google Scholar

  48. Cheng, J. & Sprik, M. Aligning electronic energy levels at the TiO2/H2O interface. Phys. Rev. B 82, 081406 (2010).

    Article Google Scholar

  49. Cramer, C. J. Essentials of Computational Chemistry: Theories and Models (Wiley, 2004).

  50. Tomasi, J., Mennucci, B. & Cammi, R. Quantum mechanical continuum solvation models. Chem. Rev. 105, 2999–3094 (2005).

    Article Google Scholar

  51. Basdogan, Y., Maldonado, A. M. & Keith, J. A. Advances and challenges in modeling solvated reaction mechanisms for renewable fuels and chemicals. WIREs Comput. Mol. Sci. 10, e1446 (2020).

    Article Google Scholar

  52. Pliego, J. R. & Riveros, J. M. The cluster−continuum model for the calculation of the solvation free energy of ionic species. J. Phys. Chem. A 105, 7241–7247 (2001).

    Article Google Scholar

  53. Jinich, A., Sanchez-Lengeling, B., Ren, H., Harman, R. & Aspuru-Guzik, A. A mixed quantum chemistry/machine learning approach for the fast and accurate prediction of biochemical redox potentials and its large-scale application to 315 000 redox reactions. ACS Cent. Sci. 5, 1199–1210 (2019).

    Article Google Scholar

  54. Toyao, T. et al. Machine learning for catalysis informatics: recent applications and prospects. ACS Catal. 10, 2260–2297 (2020).

    Article Google Scholar

  55. Freeze, J. G., Kelly, H. R. & Batista, V. S. Search for catalysts by inverse design: artificial intelligence, mountain climbers, and alchemists. Chem. Rev. 119, 6595–6612 (2019).

    Article Google Scholar

  56. Xu, Y., Yamazaki, M. & Villars, P. Inorganic materials database for exploring the nature of material. Jpn. J. Appl. Phys. 50, 11RH02 (2011).

    Article Google Scholar

  57. Curtarolo, S. et al. AFLOWLIB.ORG: a distributed materials properties repository from high-throughput ab initio calculations. Comput. Mater. Sci. 58, 227–235 (2012).

    Article Google Scholar

  58. Belsky, A., Hellenbrandt, M., Karen, V. L. & Luksch, P. New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design. Acta Crystallogr. Sect. B 58, 364–369 (2002).

    Article Google Scholar

  59. Jain, A. et al. The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

    Article Google Scholar

  60. Saal, J. E., Kirklin, S., Aykol, M., Meredig, B. & Wolverton, C. Materials design and discovery with high-throughput density functional theory: the open quantum materials database (OQMD). JOM 65, 1501–1509 (2013).

    Article Google Scholar

  61. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

    Article Google Scholar

  62. Palkovits, R. & Palkovits, S. Using artificial intelligence to forecast water oxidation catalysts. ACS Catal. 9, 8383–8387 (2019).

    Article Google Scholar

  63. Guo, Y. et al. Machine-learning-guided discovery and optimization of additives in preparing Cu catalysts for CO2 reduction. J. Am. Chem. Soc. 143, 5755–5762 (2021).

    Article Google Scholar

  64. Zheng, J. et al. Symbolic transformer accelerating machine learning screening of hydrogen and deuterium evolution reaction catalysts in MA2Z4 materials. ACS Appl. Mater. Interfaces 13, 50878–50891 (2021).

    Article Google Scholar

  65. Takigawa, I., Shimizu, K.-i, Tsuda, K. & Takakusagi, S. Machine-learning prediction of the d-band center for metals and bimetals. RSC Adv. 6, 52587–52595 (2016).

    Article Google Scholar

  66. Zhang, Y. & Xu, X. Machine learning band gaps of doped-TiO2 photocatalysts from structural and morphological parameters. ACS Omega 5, 15344–15352 (2020).

    Article Google Scholar

  67. Spiegelman, F. et al. Density-functional tight-binding: basic concepts and applications to molecules and clusters. Adv. Phys. X 5, 1710252 (2020).

    Google Scholar

  68. Senftle, T. P. et al. The ReaxFF reactive force-field: development, applications and future directions. NPJ Comput. Mater. 2, 15011 (2016).

    Article Google Scholar

  69. Kmiecik, S. et al. Coarse-grained protein models and their applications. Chem. Rev. 116, 7898–7936 (2016).

    Article Google Scholar

  70. Samanta, B. et al. Challenges of modeling nanostructured materials for photocatalytic water splitting. Chem. Soc. Rev. 51, 3794–3818 (2022).

    Article Google Scholar

  71. Blase, X., duch*emin, I. & Jacquemin, D. The Bethe–Salpeter equation in chemistry: relations with TD-DFT, applications and challenges. Chem. Soc. Rev. 47, 1022–1043 (2018).

    Article Google Scholar

  72. Wiktor, J., Reshetnyak, I., Ambrosio, F. & Pasquarello, A. Comprehensive modeling of the band gap and absorption spectrum of BiVO4. Phys. Rev. Mater. 1, 022401 (2017).

    Article Google Scholar

  73. da Silva Oliboni, R., Bortolini, G., Torres, A. & Rego, L. G. C. A nonadiabatic excited state molecular Mechanics/Extended Hückel Ehrenfest method. J. Phys. Chem. C 120, 27688–27698 (2016).

    Article Google Scholar

  74. Greene, S. M. & Batista, V. S. Tensor-train split-operator fourier transform (TT-SOFT) method: multidimensional nonadiabatic quantum dynamics. J. Chem. Theory Comput. 13, 4034–4042 (2017).

    Article Google Scholar

  75. Westermayr, J. & Marquetand, P. Machine learning for electronically excited states of molecules. Chem. Rev. 121, 9873–9926 (2021).

    Article Google Scholar

  76. Rudshteyn, B. et al. Calculation of metallocene ionization potentials via auxiliary field quantum Monte Carlo: toward benchmark quantum chemistry for transition metals. J. Chem. Theory Comput. 18, 2845–2862 (2022).

    Article Google Scholar

  77. Gaggioli, C. A., Stoneburner, S. J., Cramer, C. J. & Gagliardi, L. Beyond density functional theory: the multiconfigurational approach to model heterogeneous catalysis. ACS Catal. 9, 8481–8502 (2019).

    Article Google Scholar

  78. Szalay, S. et al. Tensor product methods and entanglement optimization for ab initio quantum chemistry. Int. J. Quantum Chem. 115, 1342–1391 (2015).

    Article Google Scholar

  79. Kirkpatrick, J. et al. Pushing the frontiers of density functionals by solving the fractional electron problem. Science 374, 1385–1389 (2021).

    Article Google Scholar

  80. Guda, A. A. et al. Understanding X-ray absorption spectra by means of descriptors and machine learning algorithms. NPJ Comput. Mater. 7, 203 (2021).

    Article Google Scholar

  81. Behler, J. Machine learning potentials for atomistic simulations. J. Chem. Phys. 145, 170901 (2016).

    Article Google Scholar

  82. Masood, H., Toe, C. Y., Teoh, W. Y., Sethu, V. & Amal, R. Machine learning for accelerated discovery of solar photocatalysts. ACS Catal. 9, 11774–11787 (2019).

    Article Google Scholar

  83. Chen, Z., Bononi, F. C., Sievers, C. A., Kong, W.-Y. & Donadio, D. UV–visible absorption spectra of solvated molecules by quantum chemical machine learning. J. Chem. Theory Comput. 18, 4891–4902 (2022).

    Article Google Scholar

  84. Hruska, E., Gale, A. & Liu, F. Bridging the experiment-calculation divide: machine learning corrections to redox potential calculations in implicit and explicit solvent models. J. Chem. Theory Comput. 18, 1096–1108 (2022).

    Article Google Scholar

  85. Seritan, S. & Martinez, T. OMSC 2019 nonadiabatic dynamics study of the B850-B800 complex in LH2 using TeraChem Cloud. VIRT&L-COMM 19, VIRT&L-COMM.19.2019.21 (2019).

Download references

The landscape of computational approaches for artificial photosynthesis (2024)

References

Top Articles
Latest Posts
Article information

Author: Kimberely Baumbach CPA

Last Updated:

Views: 5746

Rating: 4 / 5 (61 voted)

Reviews: 92% of readers found this page helpful

Author information

Name: Kimberely Baumbach CPA

Birthday: 1996-01-14

Address: 8381 Boyce Course, Imeldachester, ND 74681

Phone: +3571286597580

Job: Product Banking Analyst

Hobby: Cosplaying, Inline skating, Amateur radio, Baton twirling, Mountaineering, Flying, Archery

Introduction: My name is Kimberely Baumbach CPA, I am a gorgeous, bright, charming, encouraging, zealous, lively, good person who loves writing and wants to share my knowledge and understanding with you.